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SUMMARY 

We are interested in solving second-order PDEs with multigrid and unstructured meshes. The multigrid 
strategy we present here is adapted from the generalized finite volume agglomeration multigrid algorithm we 
have developed recently for the solution of the Euler equations. We now focus on Poisson’s equation. 
A strategy is defined by introducing a correction factor for the diffusive terms, and some illustrating results 
are given. 

0. INTRODUCTION: WHY UNSTRUCTURED VOLUME AGGLOMERATION? 

Some industrial needs necessitate the simulation of complex flows. By complex, we mean that the 
geometry might be complex and/or the physical phenomena might show local high variations 
(high gradients, shocks, etc). 

The first problem encountered in simulating this type of flow is to define a good mesh. By good, 
we mean to get a mesh which must be well adapted to both geometry and solution. One way to 
reach that goal is to define a regular mesh which is then locally refined where it is needed: we then 
end up with a mesh which is no longer regular. Another issue is to handle unstructured meshes 
and this is the option we are considering in this paper. 

Many methods are available for solving PDEs on a finite element like mesh, but only a few of 
them can reach the maximal efficiency when dealing with very tine meshes. That means we are 
interested in low-complexity algorithms like Multi-Grid (MG) solvers, and we restrict our 
attention to this category. 

Now is the problem of constructing a series of grids (levels) in the MG context. Whereas finite 
difference meshes induce easily defined coarser meshes, unstructured meshes set the important 
question on how to get coarser levels from a given arbitrary (fine) mesh. This is particularly the 
case for meshes obtained from mesh generators using, e.g. Voronoi’ or advancing-front tech- 
niques, or mesh adapter using, e.g. local refinements. At this point, we have to note that tree or 
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hierarchical, fully nested meshes are very useful for many simulations of physical phenomena, but 
are not yet very much applied to compressible CFD. 

Then the common engineering question is how to define easily coarser meshes for solving 
efficiently some given flow problem on an arbitrary given (fine) mesh. 

One answer is to build a sequence of unnested coarser meshes, e.g. as in References 1-4. This 
necessitates to handle a sequence of meshes instead of only one for each new computation. 

Another answer is to apply some black-box linear solver such as Algebraic Multi-Grid 
(AMG)5.6 where the different (coarse) levels are automatically built using only the initial (fine) 
matrix information. 

Our answer is an agglomeration approach, i.e. coarser equations are derived on coarser meshes 
obtained by grouping the finite volumes of the fine grid. It needs only one mesh to generate 
automatically all the coarser meshes wanted, but compared to the above second answer, the 
coarsening is simple and is a low-storage process. I t  has also the advantage to define meshes 
which are all nested. This simplifies the way we want to define the transfer operators and also the 
programming. 

The agglomeration approach has already been successfully applied to inviscid flow calcu- 
lations.' It is, from our point of view, much more difficult to apply to viscous flow problems. The 
purpose of this paper is to show why it is difficult and to propose a device to overcome the main 
difficulty. 

The paper is organized in the following way: we first give an idea of the relation existing 
between the volume agglomeration technique and the algebraic equation summing, in a simpli- 
fied one-dimensional (ID) case; Section 2 is devoted to the definition of a volume agglomeration 
method related to a variational formulation of the two-dimensional (2D) Poisson equation; in 
Section 3 we give some information about some less-crucial options in the design of the MG 
scheme; at last, Section 4 illustrates our study by giving some significant numerical results and we 
then draw some conclusive remarks. 

1. ALGEBRAIC AGGLOMERATION 

I . I .  A I D  trivial example 

We consider the following periodic problem: 

-m,, + u, =f on [0, I], u periodic of period 1, 

with the following finite difference/volume discretization 

( 1 )  
uj+,  - 2 u j + u j - ,  u j - u j - l  +- =A for i = l , .  . . ,n-1, 

h2 h 
- E  

where n denotes the total number of discretization nodes that we suppose to be odd, ui stands for 
u ( x i ) ,  x i  = ih  is the discretization node in the interval [O, 13 which is regularly split with a space 
step h =  l/(n-l); x,-O, x , - ~ =  1 and x , = x l .  Equation (1) leads to an algebraic system with 
a circulant (n -  1 )  x ( n -  1) tridiagonal matrix, the row of which reads as 

[-;-; 2;+; -h' 

and with a right-hand side (RHS) defined by the following (n - 1) component vector: 

f=(f1,f*, . . . 3fn-1)T 
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We now define the new coarse discretization derived from the original one by skipping only 
nodes with even indices. We denote by H the coarse space step which is twice larger than h. Now 
consider the new system obtained by 

(1 )  summing line i=2p-1 and line i + 1 = 2 p ( p = 1 , .  . . ,(n-l)/2),and 
(2) identifying both fine unknowns u2p and u Z p -  to the new coarse unknown value denoted 

The result of this process will be called in the following the coarsened system. 
by U P .  

Remark 1.1. Note that this process is a Galerkin process and can be interpreted algebraically as 
follows. Let A = ( u ~ ~ ) ~ ,  j =  l . ,  . . , n  be an n x n square malrix and denote the set of fine indices by I (the 
cardinalityofl isn).Nowsuppose that we haveacertainpartitionofI:l=I,u12u~~~ulN, N @ n  
and that A is reordered following this partition. Then A can be written as 

where ALP=(uif,jp)if~EIf~,jpEIP, with L, P= 1 , .  . . , N, is an NL x NP block matrix, where NL denotes 
the cardinality of the subset l L ,  L =  1 , .  . . , N .  Now if we define the new N x N coarse matrix 
A C = ( ~ ~ L ) p ~ L = l , . . . , N  derived from A by summing all entries belonging to a same block matrix 
ALP and if we denote the resulting quantity by uzp, we end up with the following coarse matrix 

= .yT ~ . f ,  

where the restriction operator .fT is the transpose of 9, and 9 is an n x N interpolation operator 
with coefficients ojp, j =  1 , .  . . , n, P =  1 , .  . . , N defined by 

1 if j e l p ,  i 0 otherwise. 
wjp = 

Now if u denotes the n-component fine unknown vector, then the coarse matrix A' is associated 
with the N-component coarse unknown vector which we can denote by U c .  This means that for 
a given P, P =  1 , .  . . , N, we identify all fine variables u j , j e l p  with the single coarse variable Up. 
As i t  is algebraically written (with the transfer operators .a and YT), this coarsening process is of 
Galerkin type. Therefore, properties such as symmetry and positiveness of the original matrix 
A still hold for the coarse grid matrices. 

1.2. The advection case 

We first consider the case E = O  (advection equation); then we get the resulting coarsened 
equation 

u p -  up- L 
= ( f ~ ~ - l + f 2 ~ ) ,  p = l , .  . . , N - I  with N=(n+1)/2.  h 

Noting that the new spatial step H is twice as large as h, one can verify that the coarsened system 
is also a consistent approximation of the advection continuous equation; further, we get a finite 
volume formulation that relies on the agglomeration of two neighbouring cells (2m and 2m + 1, 
m = O ,  . . . , ( n  -2)/2); this approach has been developed as the volume-agglomeration approach 
and has been applied to 2D and 3D Euler flow  calculation^.^ 
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1.3. The difusion case: inconsistency 

We now set E =  1 and drop the advection term; applying the coarsening process as previously 
described (summing line 2 p  to 2 p -  I and applying the identification: U p -  = u ~ , ~ -  1,, 

U p = ~ Z p - l = ~ 2 p ,  U p + I = u 2 ( p + l , = ~ 2 p + , ) ,  we now get the following system: 

We note that this system is no more consistent with the continuous system, a factor 2 is missing on 
the RHS. 

Since we wish to combine diffusion and convection, any correction of this problem must be 
applied only to the diffusion term (and not to the RHS for example). 

One evident remedy is to multiply the diffusion term by the factor 1/2; more generally, in ID, 
we suggest to apply a factor 2-' for the kth coarser mesh. 

2. THE VARIATIONAL POINT OF VIEW 

The above construction can be extended to the multidimensional case with unstructured meshes. 
One way is to consider a Galerkin variational formulation; we restrict our investigations to P1 
approximations (continuous piecewise linear basis functions, with triangles (2D) or tetrahedra 
(3D), where the discretization nodes coincides with the vertices); for simplicity, we will consider 
only the 2D context. 

Let Vh be the space generated by the standard continuous piecewise linear basis functions, 
denoted by I # I ~ ,  which are defined by 

4i= 1 at vertex i, 0 on any other vertex, 

where i is any vertex of the triangulation not belonging to the boundary. Any function u in Vh can 
thus be expressed by 

u = c  uifpi. 
i 

Since the Galerkin principle is used, the basis functions are also the test functions. From 
Poisson's problem (with the Dirichlet boundary conditions), 

-Au=1; on R c  Rz, 

we derive the following system: 

In order to keep the Galerkin standpoint, we decided to compress our system by replacing the 
above basis functions by a smaller set of functions which are linear combinations of the original 
ones; moreover, in order to be able to apply a finite volume scheme in the volume-agglomeration 
framework, we define these new basis functions as follows. 

Let If be the set of fine indices i and let n be its cardinality number. We 

(i) define the following partition I /  : 

I f = { 1 , .  . . , i , .  . . , n } = l l u l z u ~ ~ ~ u I N ,  

where N 4 n ;  
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(ii) define the new (coarse) basis functions, O J ,  for any subset I J ,  J =  1 , .  . . , N by 

Q J =  C # j .  
j € I J  

Defining the N-component coarse unknown vector U by the following identification: 

U J - u j ,  VjelJ, J =  1 , .  . . , N ,  

the new (coarsened) system to be solved is then written as 

U , V @ , ' V @ j - f @ j  dv=O for all J=1,. . . , N .  I [ I= ," . . ,  1 
In practice, the subsets I J  are built from neighbouring relations; a coarsening algorithm 

straightly deduced from an efficient algorithm which has been extensively used in Reference 7 and 
is defined in the following process. 

Each cell i is considered successively (alternately in the increasing or decreasing numeral order 
according to the coarse level number to be built): 

(i) if the current cell i has already been included in a coarse zone then go to (ii); else create 
a new coarse zone I containing the cell i ,  and neighbouring cells j which do not already 
belong to another previously defined coarse zone; 

(ii) if all the cells have been coloured stop, else consider the next cell i and go to (i). 

The resulting compressed/agglomerated system is inconsistent, as shown in the 1D case; the 
missing property of the coarse approximation space is the density of the basis set in the Sobolev 
space H' (while density is true in L2). 

The consequence of the inconsistency is not that a coarse grid correction will not help to reach 
the solution, but that low frequencies will not be damped with a reduction factor much less than 
one; instead, we may have a damping factor close to one, leading to a very poor convergence 
speed. 

In order to overcome the inconsistency problem of the above agglomerated system, we 
introduce the following correction, which is empirically derived from simplified cases: 

Correction rule: I n  the corrected system, viscous terms are multiplied by the factor 

K . , . = 2 ( J v -  1)2/(2N- 1)2, 

where Jv is an approximation of the number of nodes in one direction. That is estimated as follows: 

where d is the space dimension and NS the total number of coarse zones. 

We can derive the following lemma. 

Lemma 2.1. The above correction yields a consistent coarsened approximation in the case of 
a Cartesian mesh (orthogonal, regular) discretizing a rectangle. 

Proof. We consider the following problem: 

- A u = l ,  on Q=]O, 1 [x]O, 1[, 
ulr=O, with T=dR.  
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Let m,!' be the vertices of the triangulation discretizing Q, defined by 

m , ! ' = ( x : , y : ) = ( ( k - l )  h , ( ! - l ) h ) ,  (3) 
where (k ,  1 ) ~ [ 1 , .  . . , n] x [ l , .  . . , n] and i = ( k -  1 )  n + l € [ l , .  . . , n 2 ] ,  h= l /(n- 1 )  is the space 
step for both x and y directions. 

We discretize problem (2) by a Galerkin variational formulation with the standard continuous 
piecewise linear basis functions 4i as test functions. Then we get the following linear system: 

Ahuh = s h ,  

where 

$ = h 2 ,  

A:i = 4, Afi- = A;i+ =A! - , ,  = A:+,, = - 1, V i /m,! 'EQ.  

We now consider the coarse grid made of zones I, I = 1,. . . , N2, N = n/2 (n  is supposed to be 
even), deduced from the fine cells i ,  i =  I , .  . . , n2 by the previous agglomerating/coarsening 
algorithm. We now write the variational formulation of problem (2), relying on the previously 
defined coarse basis functions, on this coarse grid discretization of R. This leads to the following 
linear system: 

ACuC = s C ,  

where 
C 

S I  = 4h2 ,  
C C C C 

A,C, = 8,  AII - 1 = AII + 1 = A I I  - N =  A I I  + N =  - 2. 

The exact solution of this system is given by 

u," = 2 (h /H)2  U P ,  

with H =  1/(N - l) ,  and where u H  is the exact discrete solution of the classical P1 Galerkin 
formulation of problem (2), relying on the triangulation in which nodes m; are defined similar 
to (3), but where h and n are replaced by H and N ,  respectively. The correction factor K N  is, 
therefore given by KN=2(N - 1)2/(2N- 1). 0 

3. MG ALGORITHM 

Owing to the algebraic way of constructing the coarse grid equations (see Remark l . l ) ,  it is clear 
that some of the good properties of the fine grid matrix will also hold for all the successive coarse 
grid matrices; in particular, we can derive the following lemma. 

Lemma 3.1. If the initial matrix is an M-matrix, then the resulting coarse matrices are also 
M -matrices. 

In particular, this is true for the discretized diffusion operator when the triangulation contains 
no obtuse angles (otherwise, the positivity may be violated), and for the discretized advection 
operator, when using a first-order upwind discretization scheme. 

We now define the transfer operators of the MG algorithm. Let N,,, be the total number of 
grid levels built from an initial fine grid G1: 

GN,,, c GN,,,*,- 1 c . " c G 2  c G I  
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and we denote by nk the total number of control volumes of grid Gk by V k  the space of grid 
functions defined on Gkr for k =  I , .  . . , N,,,; for two successive levels k and k +  1, we denote by 

the set of level-k indices i ,  i E [ I ,  . . . , nk], defining the level-(k + I )  control volume of index I ,  
IE [ I , .  . . , nk+ l]. We define in the following the restriction operator T k , k +  : Vk+ V k + l ,  and the 
prolongation operator Tk+ l . k :  Vkil+ V k ,  for k =  1 , .  . . , N,,,-  1: 

which transfers the (current fine) residual rkE V k  from the 
grid Gk made of control volumes .Yf, i =  1 ,  . . . , nk ,  to the (immediate coarser) grid 
Gk+ made of control volumes V/-lk+ l ,  I = 1,. . . , nk+ 1 ,  defines the new transferred residual 
r k + l E V k + l  by 

(a) The restriction operator Tk,&+ 

r k + l . l  %' [ T & , k + l ( r k ) l l = ~  r&.i? 
i e i  

where r k , i  is the value of the fine residual rk on cell Y! ,  i =  1 , .  . . , nk, and 
[ T k , k + l ( r k ) ] I = r k + l . I  is the corresponding transferred value on zone Y:+l ,  Isi, 

I 

! = I , .  . . , f l k + l .  

(b) The prolongation operator Tk+  l , k ,  which transfers the level++ 1) error function 
ek+ E V k f l  (i.e. the solution of the residual equation on the coarse level k +  1) from grid 
Gk+ to the fine grid Gk, defines the correction to be added to the solution of the level-k 
problem; this operator is the composition of a projection operator Pk+l ,k :  V k + ' +  V k  and 
an averaging operator Qk : V k +  V' defined by 
(1) Projection operator Pk+ 1 . k :  V k + l  + Vk corresponds to the natural injection operator 

and is given by 
def Pk+l .k(ek+l )  = ek, 

where ek is the level-k grid function defined on the fine grid Gk by - 
ek,i=f?k+l,jI  v i = l , .  . . , n k r  tf!=l,. . . , n k + l , s . t .  13 i ,  

where ek , i  and e k + l , l  denote the value of ek on control volume Vf  and the value of 
ek + on control volume VF + l ,  respectively. 

( 2 )  Averaging operator Q k :  Vk+ Vk  is given by 

Qk(ek) = p ave (ek) + (1 - p) ek 
with 

where 

AREA= area (Yj), 

Nk(i) is the set of level-k indicesj, corresponding to the control volumes Vj neighbour- 
ing f!, and p is a positive weighting coefficient between ek, i  and [ave(ek)li that may be 
larger than one. 

j E . + " ( i ) u { i }  

Therefore, the prolongation operator Tk+ l , k  is written as 

Tk + l,k(ek+ 1 )= Q k  P k +  l . k  (ek+ 1). 



34 B. KOOBUS, M.-H. LALLEMAND A N D  A. DERVIEUX 

I t  is important to note that this prolongation operator, due to the averaging operator Qk, 
smoothens the resulting interpolated error ek on the (current) fine grid Gk. 

4. IMPLEMENTATION 

4 .1 .  The coarse grid equations storage, memory requirements 

following integrals: 
Instead of handling the matrix coefficients, we perform the gathering of the equations from the 

with I ,  m =  1 , .  . . , d,  d being the space dimension, and i, j =  1,. . . , n, n being the total number of 
control volumes of the grid to be considered. 

We say that to any couple of coarse zones ( I , J )  such that at least one a;: is not zero, 
corresponds a 'segment'. On the fine grid, segments are edges. 

On the finest grid G I ,  there is no need of storing those integrals a;; and the assembling of the 
finest grid equation is done by segments and by elements (triangles). 

On the coarse grids Gk, k =  2 , .  . . , N,,,,  the assembling of the coarse grid equations is done in 
two steps: we are storing all the integrals a,, , I ,  J = 1, . . . , nk .  The computations of these 
quantities are done by a loop over the triangles for the first coarse level k = 2, and by a loop over 
the level-k segments for the other coarse levels k +  1, k = 2 , .  . . , N,,,-  1. The coarse grid 
equations are then gathered by considering the coarse grid segments. 

Therefore, the memory requirement of the multigrid process for storing the 2D diffusive terms 
(storage a,, on the coarse grids) is given by 

I J  

J J  

(ns + $ nseg) x real numbers z 5 ns x real numbers, 

since nseg 1 3  ns, where ns and nseg are, respectively, the number of vertices and segments of the 
initial (finest) mesh. 

5. NUMERICAL EXPERIMENTS 

For each experiment, a solution is considered to be converged if the iterative residual Res(a) 
reaches the tolerance E,= Res(a) is the iterative residual obtained at the iteration number 
u and is defined by 

where uU is the ath multigrid solution iterate, with uo = 0. 
As a smoother, we use either the Gauss-Seidel iteration, or the Jacobi iteration with under- 

relaxation. 
The value of the weighting coefficient B of the prolongation operator Tk+ 1 . k  is set at 1-5. This 

value has been chosen after a series of experiments on diffusion and advection for the three 
meshes which are considered in the sequel. For a V-cycle scheme with one pre- and post- 
smoothing on each grid, it appears that performing no smoothing in the transfer ( j = O )  results in 
very bad performance for the Jacobi smoother with the uniform mesh, and for both smoothers if 
the mesh is stretched. Giving priority to the worse performances (stretched mesh), a good 
compromise is to set p = 1.5. This value is set for all the results we present in the following section. 
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5.1.  Impact of the agglomeration strategy on the MG convergence 

We consider the following ID problem: 

- u x x =  1, on 10, I[, 

u(0) = u( 1) = 0. 

We define a uniform discretization of the unit interval, resuting in a mesh with n =  101 nodes. We 
are interested in the solution of this problem by an ideal two-grid scheme (i.e. the coarse grid 
equation is solved up to its full convergence) in the two following cases of agglomeration 
procedure: 

(i) the agglomeration procedure is the one previously defined in Section 2; 
(ii) the agglomeration procedure is modified by adding the following restriction in constructing 

the coarse zones: as soon as a new coarse zone I contains only a single fine cell i, this new 
coarse zone is destroyed and the cell i is put into another existing coarse zone containing at 
least one neighbour of the cell i .  

Option (ii) was used in Reference 7 to avoid too small coarse zones. In the more recent versions, 
alternating the numbering order while grouping cells is sufficient to avoid very small coarse zones 
(i.e. zones reduced to a single fine zone). The smoother used in our ideal 2-G algorithm is the 
classical point Gauss-Seidel relaxation. 

The mean reduction factor p of the residual and the number of ideal 2-G cycles needed to reach 
the convergence level of are given in Table I for the previous agglomeration procedures (i) 
and (ii). If ace,, denotes the total number of ideal 2-G cycles leading to convergence, then p is 
defined by 

p =a-~~JIRe~(a,o,,)]. 

These notations are kept in all the following numerical tests. 

we keep in the sequel. 
One can note that the results are much better in the case of agglomeration (i). This is the option 

5.2. 2D advection-diffusion equation: some numerical experiments 

We consider now the problem --E Au+div(Vu)= 1, with the homogeneous Dirichlet boundary 
conditions. We propose to solve this problem with a V-cycle MG scheme, where two iterations of 
the basic iterative method (one pre- and post-smoothing) are done on each level at each cycle. For 
most of the following numerical experiments, this number of smoothing sweeps per level 
corresponds with the optimal CPU time. 

The convergence of the MG scheme is studied for three types of meshes: 

(a) a structured uniform fine mesh, 
(b) an unstructured fine mesh, 
(c) a stretched structured fine mesh. 

Table I. Ideal 2-grid convergence factors 

Agglomeration (i) Agglomeration ( i i )  

0.275 
12 

0.389 
16 
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Strucrured uniform fine mesh. The calculations are done on a uniform square mesh with 41 x 41 
nodes (see Figure 1). The number of grids used is five and the finite volume partitions of the 
different grids are sketched in Figure 2. 

The multigrid convergence factors for several values of e and V are given in Tables I1 and 111. In 
Table 11, the under-relaxation parameter w of Jacobi smoother is set at 0.8. Indeed, with this value 
of o, Jacobi has the best smoothing properties for the Laplacian problem. 

For the same convergence level, a single-grid Gauss-Seidel solver leads to cc,,,, = 221 3, and 
a single-grid Jacobi solver (with under-relaxation parameter o = 0 8 )  leads to tlconv = 5521. 

Note that for the Poisson equation (Table 11), the mean reduction factor is better with 
Gauss-Seidel as a smoother; indeed, i t  is well known that Gauss-Seidel has better smoothing 

Figure I .  The 41 x 4 1  triangulation of the 2 D  unit square 

GI 

Figure 2. The finite volume 

G5 

partition grids G,, k =  I ,  
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properties than Jacobi (even used with an optimal relaxation parameter), when applied to 
Poisson's equation, but the difference is not so big with this regular (and not very fine) mesh. 
Table 111 shows that the mean reduction factor of the residual becomes much smaller when the 
convection part dominates the diffusion part. This can be explained by the fact that, with these 
specific mesh and V, Gauss-Seidel tends to become a direct solver when E is small compared to 
the mesh size. 

If the cost of the transfers is neglected, the arithmetic complexity of one V-cycle, where two 
smoothing sweeps of Jacobi (one pre- and post-smoothing) are done on each level, can be 
evaluated as about four sweeps of Jacobi on the finest grid." If the matrix coefficients are not 
stored, the computation for assembling a flux with Gauss-Seidel is twice as important as with 
Jacobi. Therefore, the calculation cost of the RHS of the linear system to be solved on a coarse 
grid G k ,  k = 2 , .  . . , N,,,,  is about half a sweep of Gauss-Seidel on the grid G k . - l .  The arithmetic 
complexity of one V-cycle with two Gauss-Seidel iterations on each level (one pre- and post- 
smoothing) can then be evaluated as about 10/3 sweeps of Gauss-Seidel on the finest grid. 
Consequently, the relative efficiency (in terms of arithmetic complexity) between the single-grid 
scheme (1G) and the multigrid scheme (MG) for the Poisson equation (Table 11) is given by 

where GS (resp. J) stands for Gauss-Seidel (resp. Jacobi). Note the significant gain in arithmetic 
complexity obtained by the MG scheme. 

Unstructuredjne mesh. A NACAOO12, aerofoil mesh involving 3 114 nodes (see Figure 3) is now 
used for the same model equation. Six grids (depicted in Figure 4) are used to define the V-cycle 
scheme. Convergence results are given in Tables IV and V. 

Table 11. E =  1, V=(O, O)T 

MG-Jacobi (w=O.8) MG-Gauss-Seidel 

P 0.3 64 0.300 
% o w  15 13 

Table 111. V = (  LO)*, MG-Gauss-Seidel 

& = I  & = l o - '  & =  1 0 - 3  

P 0.306 0.234 0.1 17 
r c a n v  13 1 1  18 

Table IV. E =  I ,  V=(O,O)T 

MG-Jacobi (o = 0.8) MG-Gauss-Seidel 

P 0.690 0.496 
%"" 39 21 
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Table V. V =( 1 ,  O)T, MG-Gauss-Seidel 

t =  1 t=10-' t =  10-3 

P 0.422 0.402 0.399 
%O"" 17 17 17 

Figure 3. The NACAOOIZ aerofoil triangulation with 31 14 nodes 

For the same convergence level, a single-grid Gauss-Seidel solver leads to c1,,,, = 3007, whereas 
a single-grid Jacobi solver (with a relaxation parameter w=O.8) leads to a,,,, = 7395. 

One can note that the gain in the convergence obtained by Gauss-Seidel versus Jacobi 
(Table IV) is more important in this example than in the previous unit square example. We can 
also observe that the mean reduction factor p improves only slightly when the diffusion is 
decreasing (Table V). The relative efficiency between the single-grid scheme and the multigrid one 
for the Poisson equation (Table IV) is given by 

Note again the improvement of the MG complexity. 

Stretched structuredjine mesh. We present now calculations on a 41 x 41 square stretched mesh in 
which the maximal ratio between the length of two orthogonal sides of the flattest elements is one 
hundred (see Figure 5). Five grids are used for the experiments (see Figure 6). 
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Figure 4. The NACAOOl2 aerofoil finite volume partition grids G,, k =  1 , .  . . , 6  

Figure 5. The stretched 41 x 41 triangulation of the 2 D  unit square 
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GI Gs 

Figure 6. The finite volume partition grids C,, k = I , .  . . , 5 

Table VI. E =  1 ,  V=(O, O)T 

MG-Jacobi (w = 0.8) MG-Gauss-Seidel 

P 0.925 0.842 
%a"" I78 82 

The results about multigrid convergence are given in Table VI for the Poisson equation 
-Au= 1 with the Dirichlet boundary conditions. 

For the same convergence level, a single-grid Gauss-Seidel solver leads to a,,,, = 1440, whereas 
a single-grid Jacobi solver (o = 0.8) leads to a,,,, = 3597. 

We point out that the convergence rate is much slower than the one gotten in the case of 
uniform meshes. This is essentially due to the fact that standard solvers such as Gauss-Seidel and 
especially Jacobi are not very efficient smoothers in the case of meshes having 'very flat' cells. As 
an illustration, we show in Figure 7 the dependency of the mean reduction factor versus the 
number of smoothing sweeps (Gauss-Seidel relaxations) done on the fine level at each MG- 
cycle for an ideal two-grid scheme. From the behaviour of the convergence history, we deduce 
that a better smoother would improve a lot our existing MG-method in the case of stretched 
meshes; indeed, increasing the number of Gauss-Seidel relaxations on the fine level up to 
a moderate number of relaxation sweeps, results in a COI responding acceleration of convergence 
to be compared with the 1400 Gauss-Seidel iterations required on the fine grid for the same 
convergence level. The same behaviour is observed with a five-grid V-cycle scheme (see Figure 8). 

Moreover, we obtain the following relative efficiency between the single-grid scheme and the 
multigrid scheme for each of the two smoothers Gauss-Seidel and Jacobi: 
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Figure 7. Ideal 2-G convergence factor as a function of number of fine smoothing sweeps (pre- and post-smoothings) 
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Note that the efficiency of the multigrid scheme compared to the single grid one is much less 

Another point to emphasize is that in all the above experiments the convergence factors were 

Finally note (see Table VI) that the number of V-cycles is divided by a factor greater than two 

important than in the previous cases (a) and (b). 

observed to be approximately level independent. 

when Gauss-Seidel is used as a smoother instead of Jacobi. 

6. CONCLUSION 

Solving the Poisson equation in 2D is neither a big challenge nor our ultimate goal; our 
motivation was to find a method extending to viscous flows a MG algorithm which was already 
successfully applied to inviscid flows’ on unstructured meshes. 

We found an important theoretical difficulty related to the inter-level inconsistency, that 
remains unsolved; however, the trick that we applied seems to be efficient in the different practical 
examples that we have considered. Systems on very irregular but non-stretched meshes are solved 
within 20 cycles; convergence results obtained in the case of stretched meshes appeared to depend 
more on the efficiency of the smoother, rather than on the quality of the resulting coarse systems. 
The efficient treatment of stretched meshes is a classical challenge, in particular for the definition 
of good and robust MG schemes. Another remedy that comes to mind is to define a more 
sophisticated agglomerating process which would respect, at least geometrically, the scaling of the 
mesh size. 

Extensions to other types of elements and 3D problems seem to be reasonably possible. 
The global evaluation we can make from these preliminary studies is, from our opinion, 

positive and promising with respect to further extensions to the calculations of viscous compress- 
ible flows. For that program, several methods can be exploited, such as implicit solvers for 
Navier-St~kes,’.’~ and MG relaxation methods for Euler,’ although those methods are already 
developed in the context of multiple triangulations. 
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